a) \(MTC=a^2x^2b^2\)
\(NTP:a^2x^2b^2:a^2x=xb^2\)
\(a^2x^2b^2:x^2b=a^2b\)
\(a^2x^2b^2:b^2a=ax^2\)
Quy đồng :
\(\dfrac{a+x}{a^2x}=\dfrac{\left(a+x\right)\cdot xb^2}{a^2x.xb^2}=\dfrac{axb^2+x^2b^2}{a^2x^2b^2}\)
\(\dfrac{a+b}{x^2b}=\dfrac{\left(a+b\right)\cdot a^2b}{x^2b\cdot a^2b}=\dfrac{a^3b+a^2b^2}{a^2x^2b^2}\)
\(\dfrac{b+a}{b^2a}=\dfrac{\left(b+a\right)\cdot ax^2}{b^2a\cdot ax^2}=\dfrac{abx^2+a^2x^2}{a^2x^2b^2}\)