Ta có:
\(\dfrac{4x^2-3x+5}{x^3-1}=\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
MTC: \(\left(x-1\right)\left(x^2+x+1\right)\)
\(\dfrac{4x^2-3x+5}{x^3-1}=\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(-2=\dfrac{-2\left(x-1\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-2\left(x^3-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-2x^3+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\dfrac{1-2x}{x^2+x+1}=\dfrac{\left(x-1\right)\left(1-2x\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-2x^2-1+3x}{\left(x-1\right)\left(x^2+x+1\right)}\)