Cho nửa đường tròn tâm (O) đường kính BC ,vẽ tam giác ABC nhọn(điểm A nằm ngoài nửa đường tròn ,A thuộc cùng nửa mặt phẳng với nửa đường tròn có bờ BC) ,AB và AC cắt nửa đường tròn tại D và E ,H là giao điểm của BE và CD ,F là giao điểm của BH và CDCm:a)tứ giác ADHE là tứ giác nội tiếp b) cm AE.AC=AB.AD
AI GIÚP MK VS :((
va AD. Citing minh MN // AC. Bài 6: (2,5 điểm) Cho tam giác ABC vuông tại A, đường tròn tâm O đường kinh AB cắt BC tại D. a) Chứng minh AC^ angle = CD .Cl b) Gọi I là trung điểm của BD, tiếp tuyến tại D của đường minh rằng FB là tiếp tuyến của (O). tròn (O) cắt AC tại E và cắt tia OI tại F. Chứng c) Giả sử AB = 6 cm, AC = 8 cm. Tính diện tích của tứ giác ABFE.
Cho đường tròn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tròn. SA và SB lần lượt cắt đường tròn tại M,N. Gọi H là giao điểm của BM và AN. Chứng minh SH vuông góc với AB
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a, BD2 = DE.DF
b, góc MSD = góc MBA
Cho đường tròn tâm O đường kính AB và S là một điểm nằm ngoài đường tròn. Vẽ đường thẳng SA và SB lần lượt cắt (O) tại điểm thứ hai M,N. Gọi H là giao điểm của AN và BM. Chứng minh rằng 1) SH ⊥ AB 2) HM . HB = HN . HA
Cho đường tròn O và hai đường kính AB CD vuông góc với nhau lấy một điểm M trên cung nhỏ BC g vẽ tiếp tuyến với đường tròn O tại M tiếp tuyến này cắt CD tại S lấy điểm F thuộc cung nhỏ BC cắt AB ở E Chứng minh:
a,BD mũ 2 = DE.DF
b, góc MSD = góc 2MBA
Cho 2 đường tròn (O) và (O’) cắt nhau tại 2 điểm A và B. Qua A vẽ dây cung AC của đường tròn (O) cắt (O’) tại C’. Qua B vẽ dây cung BD của đường tròn (O) cắt (O’) tại D’. AC và BD cắt nhau tại I. Chứng minh DC//D’C’.
Cho đường tòn tâm O, đường kính AB và S là một điểm nằm bên ngoài đường tòn. SA và SB lần lượt cắt đường tròn tại M, N. Gọi H là giao điểm của BM và AN. Chứng minh rằng SH vuông góc với AB.