bài 1:tìm giá trị nhỏ nhất của biểu thức :P=\({ x^2 \over x+4 }.({ x^2+16 \over x }+8)+9\)
bài 2:tìm giá trị lớn nhất của biểu thức :\(({ x^3+8 \over x^3-8 }.{ 4x^2+8x+16 \over x^2-4}-{4x\over x-2}):{ -16 \over x^4-6x^3+12x^2-8x }\)
Suppose that the polynomial f(x) = x5 - x4 - 4x3 + 2x2 + 4x + 1 has 5 solutions x1; x2; x3; x4; x5. The other polynomial k(x) = x2 - 4. Find the value of P = k(x1) x k(x2) x k(x3) x k(x4) x k(x5)
Suppose that the polynomial f(x) = x5 - x4 - 4x3 + 2x2 + 4x + 1 has 5 solutions x1; x2; x3; x4; x5. The other polynomial k(x) = x2 - 4.
Find the value of P = k(x1) x k(x2) x k(x3) x k(x4) x k(x5)
Answer: P = .............
a)\(\sqrt{x+1}+\sqrt{4-x}=5-\sqrt{\left(x+1\right)\left(4-x\right)}\)
b)\(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)
c)\(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
d)\(\sqrt{x}+\sqrt{x-\sqrt{1-x}}=1\)
e)\(\sqrt{x^2+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
giải pt
1,\(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
2,\(\frac{x+4}{2x^2-5x+2}+\frac{x+1}{2x^2-7x+3}=\frac{2x+5}{2x^2-7x+3}\)
3,\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=3x\left(1-\frac{x-1}{x+1}\right)\)
4,\(\frac{2x}{x-1}+\frac{4}{x^2+2x-3=}=\frac{2x-5}{x+3}\)
5,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{x^2+x-2}\)
6,\(\frac{x+3}{x-4}+\frac{x-1}{x-2}=\frac{2}{6x-8-x^2}\)
7,\(\frac{1}{x-1}-\frac{7}{x+2}=\frac{3}{1-x^2}\)
Giải phương trình sau :
a, \(\dfrac{x+3}{x+2}-\dfrac{x+4}{x+3}=\dfrac{x+5}{x+4}-\dfrac{x+6}{x+5}\)
b, \(\dfrac{x+1}{x-2}-\dfrac{12}{x^2-4}=\dfrac{x+7}{x+2}\)
\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{\left(x-4\right)}{x\left(x+2\right)}=0\)
\(\frac{1}{x-2}\frac{6}{x+3}=\frac{5}{6-x^2-x}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
k, x3 - x2 - 17x - 15 = 0
l, x3 +4x2+x- 6=0
m, x4+2x3-13x2 -14x+ 24 =0
n, \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
i, (x-4) (x-5) (x-6) (x-7) = 1680
p, \(\frac{1}{x^2-5x-6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
4.Giải phương trình
a) \(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)
b)\(\dfrac{1}{x-1}+\dfrac{2}{x+1}=\dfrac{x}{x^2-1}\)
c)\(5+\dfrac{76}{x^2-16}=\dfrac{2x-1}{x+4}-\dfrac{3x-1}{4-x}\)
d)\(\dfrac{90}{x}-\dfrac{36}{x-6}=2\)
e)\(\dfrac{1}{x}+\dfrac{1}{x+10}=\dfrac{1}{12}\)
f)\(\dfrac{x+3}{x-3}-\dfrac{1}{x}=\dfrac{3}{x\left(x-3\right)}\)
g)\(\dfrac{3}{x+2}-\dfrac{2}{x-2}+\dfrac{8}{x^2-4}=0\)
h)\(\dfrac{3}{x+2}-\dfrac{2}{x-3}=\dfrac{8}{\left(x-3\right)\left(x+2\right)}\)
i)\(\dfrac{x}{2x+6}-\dfrac{x}{2x+2}=\dfrac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
k)\(\dfrac{x}{x+1}-\dfrac{2x-3}{1-x}=\dfrac{3x^2+5}{x^2-1}\)
l)\(\dfrac{5}{x+7}+\dfrac{8}{2x+14}=\dfrac{3}{2}\)
m)\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)
Cần gấp ạ