21+22+23+......+210
⇒2.(1+2)+22.(1+2)+......+29.(1+2)
⇒2.3+22.3+........+29.3
⇒3.(2+22+....+29)⋮3
Vậy 21+22+23+....+210⋮3 (đpcm)
Đặt biểu thức trên là A, ta có:
\(A=2^1+2^2+2^3+...+2^{10}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=2^1.\left(1+2\right)+2^3.\left(1+2\right)+...+2^9.\left(1+2\right)\)
\(A=2^1.3+2^3.3+...+2^9.3\)
\(A=3.\left(2^1+2^3+...+2^9\right)\)
\(\Rightarrow A⋮3\)
21+22+23+....+210
=2.(1+2)+22.(1+2)+........+29.(1+2)
=2.3+22.3+...+29.3
=3.(2+22+....+29)
vi 3⋮3=>3.(2+22+....+29)
vậy 2+22+23+...+210 ⋮ 3