\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right).\frac{x-1}{\sqrt{x}}=\left[\frac{1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}-\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right].\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}=\frac{1+\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}.\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}}=\frac{2\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\sqrt{x}.\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}=2\)
nếu chưa hết giận thì mai tính đi xin lỗi
hết giận rồi thì em bắt đền
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right).\frac{x-1}{\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)-\left(1-\sqrt{x}\right)}{1-x}.\frac{x-1}{\sqrt{x}}\)
= \(\frac{-2\sqrt{x}}{1-x}.\frac{x-1}{\sqrt{x}}\)
= \(\frac{2\sqrt{x}}{x-1}.\frac{x-1}{\sqrt{x}}\)
=\(2x\)