\(\sqrt{a-2\sqrt{a-1}}\\ =\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\\ =\sqrt{\left(\sqrt{a-1}\right)^2-2\sqrt{a-1}.1+1^2}\\ =\sqrt{\left(\sqrt{a-1}-1\right)^2}\\ =\left|\sqrt{a-1}-1\right|\)
\(\sqrt{a-2\sqrt{a-1}}\\ =\sqrt{\left(a-1\right)-2\sqrt{a-1}+1}\\ =\sqrt{\left(\sqrt{a-1}\right)^2-2\sqrt{a-1}.1+1^2}\\ =\sqrt{\left(\sqrt{a-1}-1\right)^2}\\ =\left|\sqrt{a-1}-1\right|\)
Phân tích đa thức thành nhân tử (với các căn thức đã cho đều có nghĩa)
A = \(x-y-3\left(\sqrt{x}+\sqrt{y}\right)\)
B = \(x-4\sqrt{x}+4\)
C = \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)
D = \(5x^2-7x\sqrt{y}+2y\)
Bài 1 : Tính :
a) \(\dfrac{1}{5+2\sqrt{6}}-\dfrac{1}{5-2\sqrt{6}}\)
b) \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
c) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}:\dfrac{1}{\sqrt{16}}\)
d) \(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
e) \(\dfrac{4}{1+\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
f) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}-\sqrt{3}}\right):\dfrac{1}{\sqrt{21-12\sqrt{3}}}\)
Bài 2 : Rút gọn :
a) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\)
b) \(\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
c) \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
V=\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right)\left(\frac{x-1}{\sqrt{x}+1}-2\right)\)
W= \(\left(\frac{\sqrt{a}-1}{3\sqrt{a}+\left(\sqrt{a}-1\right)^2}-\frac{1-3\sqrt{a}+a}{a\sqrt{a}-1}-\frac{1}{\sqrt{a}-1}\right):\frac{a+1}{1-\sqrt{a}}\)
Tính :
a) \(\dfrac{5+2\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
b) \(\left(\dfrac{1}{2-\sqrt{5}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\right):\dfrac{1}{\sqrt{21+12\sqrt{3}}}\)
c) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}\)
d) \(\sqrt{21-6\sqrt{6}}+\sqrt{9+2\sqrt{18}}-2\sqrt{6+3\sqrt{3}}\)
e) \(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
f) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(\sqrt{5-2\sqrt{6}}\right)}{9\sqrt{3}-11\sqrt{2}}\)
g) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)-\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
1. Rút gọn biểu thức:
D = \(\frac{\sqrt{1+\frac{2\sqrt{2}}{3}}+\sqrt{1-\frac{2\sqrt{2}}{3}}}{\sqrt{1+\frac{2\sqrt{2}}{3}}-\sqrt{1-\frac{2\sqrt{2}}{3}}}\)
2. Cho A = \(\left(\frac{3}{\sqrt{1+a}}+\sqrt{1-a}\right): \left(\frac{3}{\sqrt{1-a^2}}+1\right)\)
a) Tìm điều kiện của A, rút gọn A
b) Tìm giá trị của A biết rằng a = \(\frac{\sqrt{3}}{2+\sqrt{3}}\)
c) Tìm a để \(\sqrt{A}>A\)
P/S: BÀI NÀY GIÚP EM CÂU C VỚI Ạ
1. giải các phương trình :
a) $\frac{\sqrt[2]{2x-3}}{ \sqrt[2]{x-1}}$ = 2
b) x-5 $\sqrt[2]{x-2}$ = -2
2. chứng minh bất đẳng thức :
a) $\frac{a^{2}+3}{ \sqrt[n]{a^{2}+2}}$>2
b) $\sqrt[2]{a}$ + $\sqrt[2]{b}$ $\leq$ $\frac{a}{\sqrt[2]{b}}$ + $\frac{b}{\sqrt[2]{a}}$
với a >0; b>0
Rút gọn biểu thức:
E=\(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\times\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}vớix\ge0,x\ne1\)
M=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\div\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)vớia\ge0,a\ne1\)
Lm nhanh giúp mk nhé! Thank!
cho biểu thức a=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
a rút gọn a
b tìm x để a=7
c tính giá trị của a khi x=2(2+\(\sqrt{3}\))
d tìm x để a<1
rút gọn biểu thức A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
B=\(\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}+\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)
BT: Phân tích thành nhân tử
a, \(3-\sqrt{3}+\sqrt{15}-3\sqrt{15}\)
b, \(\sqrt{1-a}+\sqrt{1-a^2}\) ( với 1 > a > -1 )
c, \(\sqrt{a^3}-\sqrt{b^3}+\sqrt{a^2b}-\sqrt{ab^2}\) ( với a,b > 0 )
d, \(x-y+\sqrt{xy^2}-\sqrt{y^3}\) ( với x,y > 0 )