\(x^3-x+y^3-y=\left(x^3+y^3\right)-\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
Phân tích như sau : \(\left(x^3+y^3\right)-\left(x+y\right)=\left(x+y\right)^3-3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2+2xy+y^2-3xy-1\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)