1) Phân tích đa thức thành nhân tử: \(a^3+b^3+c^3-3abc\)
2) Cho a, b, c thỏa mãn a+b+c=0. Chứng minh \(a^3+b^3+c^3=3abc\).
3) Cho a, b, c ≠ 0 thỏa mãn \(a^3+b^3+c^3=3abc\). Chứng minh a=b=c.
Phân tích đa thức sau thành nhân tử: A= (a+b+c).(bc+ca+ab)-abc
a+b+c=0.cmr a^3+b^3+c^3=3abc
em chứng minh thế này được không các thầy (cô) giáo
a+b+c=0
=>a+b=-c
=>a+b=3abc/-3ab
=>(a+b).(-3ab)=3abc
=>(a+b).(a^2-ab+b^2-a^2-2ab-b^2)=3abc
=>(a+b)(a^2-ab+b^2)-(a+b).(a^2+2ab+b^2)=3abc
=>a^3+b^3-(a+b)^3=3abc
mà a+b=-c=> a^3+b^3-(-c)^3=3abc
=>a^3+b^3+c^3=3abc
Phân tích đa thức thành nhân tử: \(A=\left(a+b+c\right).\left(bc+ca+ab\right)-abc\)
Cho các đa thức: \(A=x-5x^2+8x-4\)
\(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
a) Phân tích A, B thành nhân tử
b) CM: B luôn nhận giá trị nguyên khác 17 với mọi giá trị nguyên của x
Phân tích đa thức thành nhân tử :
\(A=\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)
Phân tích đa thức thành nhân tử
a, \(a^3+b^3+c^3-3abc\)
b, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
a)Cho a,b,c thỏa mãn a+b+c=0.CMR:a3+b3+c3=3abc
b)Phân tích thành nhân tử:(x-y)3+(y-z)3+(z-x)3
Phân tích đa thức thành nhân tử
a, a3 +b3 +c3- 3abc