Lời giải:
\(A=x^5+6x^4+13x^3+14x^2+12x+8\)
\(=(x^5+2x^4)+(4x^4+8x^3)+(5x^3+10x^2)+(4x^2+8x)+(4x+8)\)
\(=x^4(x+2)+4x^3(x+2)+5x^2(x+2)+4x(x+2)+4(x+2)\)
\(=(x+2)(x^4+4x^3+5x^2+4x+4)\)
\(=(x+2)[(x^4+4x^3+4x^2)+(x^2+4x+4)]\)
\(=(x+2)[(x^2+2x)^2+(x+2)^2]\)
\(=(x+2)[x^2(x+2)^2+(x+2)^2]\)
\(=(x+2)(x+2)^2(x^2+1)\)
\(=(x+2)^3(x^2+1)\)