a) \(x^7+x^2+1\)
\(=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
b) \(x^8+x+1\)
\(=x^8-x^5+x^5-x^2+x^2+x+1\)
\(=x^5\left(x^3-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-1\right)\left(x^5+x^2\right)+\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^5+x^2\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^5+x^2\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)