Đặt \(x-y=t\)
Có: \(t^2+4t-12\)
\(=t^2+6t-2t-12\)
\(=t\left(t+6\right)-2\left(t+6\right)\)
\(=\left(t-2\right)\left(t+6\right)\)
\(\Leftrightarrow\left(x-y-2\right)\left(x-y+6\right)\)
Kết luận: ...
ta có:\(\left(x-y\right)^2+4\left(x-y\right)-12\)
Đặt \(x-y=z\), ta được:
\(z^2+4z-12=z^2+6z-2z-12\)
\(=\left(z^2-2z\right)+\left(6z-12\right)\)
\(=z\left(z-2\right)+6\left(z-2\right)\)
\(=\left(z+6\right)\left(z-2\right)\)
Thay \(z=x-y\) ,ta được:
\(\left(x-y+6\right)\left(x-y-2\right)\)