\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
\(=x^3-3x^2y+3xy^2-y^3+y-x\)
\(=\left(x-y\right)^3-\left(x-y\right)\)
phân tích đa thức thành nhân tử cơ mà
=(x-y)3-(x-y)
=(x-y)[(x-y)2-1]
\(x^3+y\left(1-3x^2\right)+x\left(3y^2-1\right)-y^3\)
\(=x^3-3x^2y+3xy^2-y^3+y-x\)
\(=\left(x-y\right)^3-\left(x-y\right)\)
phân tích đa thức thành nhân tử cơ mà
=(x-y)3-(x-y)
=(x-y)[(x-y)2-1]
d. \(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
e. \(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
phân tích đa thức thành nhân tử
Phân tích đa thức thành nhân tử :
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
Phân tích đa thức thành nhân tử :
\(a,\left(x+y\right)^5-x^5-y^5\)
\(b,\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
\(c,x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\).
phân tích đa thức thành nhân tử
\(25\left(x-y\right)^20-16\left(x+y\right)^2\)
1. Phân tích đa thức sau thành nhân tử : \(\left(x+y\right)^3-x^3y^3\)
2. Chứng minh rằng :
a) \(\left(n^2-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
b)\(\left(n^6-1\right)\) chia hết cho 8 (với n là số tự nhiên lẻ)
Phân tích đa thức thành nhân tử:
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
Phân tích đa thức thành nhân tử:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
Phân tích đa thức thành nhân tử : \(\left(x+2\right)^2-\left(x-2\right)^2\)
phân tích đa thức sau thành nhân tử dựa vào phương pháp nhóm hạng tử :
a) \(x^4+25x^2+20x-4\)
b)\(x^2\left(x^2-6\right)-x^2+9\)
c)\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)