\(A=\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(A=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
\(A=\left(x^2+7x+11\right)^2-1-24\)
\(A=\left(x^2+7x+6\right)\left(x^2+7x+17\right)\)
\(A=\left(x+1\right)\left(x+6\right)\left(x^2+7x+17\right)\)
(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+11=a
(a-1)(a+1)-24
=a2-1-24
=a2-25
=(a-5)(a+5)
=(x2+7x+11-5)(x2+7x+11+5)
=(x2+7x+6)(x2+7x+16)
( x + 2 ) . ( x + 3 ) . ( x + 4 ) . ( x + 5 ) - 24
= [ ( x + 2 ) . ( x + 5 ) ] . [ ( x + 3 ) . ( x + 4 ) ] - 24
=( x2 + 7x + 10 ) . ( x2 + 7x + 12 ) - 24
Đặt x2 + 7x + 11 = y ta có
( y - 1 ) . ( y + 1 ) - 24 = y2 - 1 - 24
= y2 - 25
= ( y + 5 ) . ( y - 5 )
Thay y = x2 + 7x + 11 vào biểu thức ta có :
( x2 + 7x + 11 + 5 ) . ( x2 + 7x + 11 - 5 )
= ( x2 + 7x + 16 ) . ( x2 + 7x + 6 )
= ( x2 + 7x + 16 ) . ( x2 + x + 6x + 6 )
= ( x2 + 7x + 16 ) . [ ( x2 + x ) + ( 6x + 6 )]
= ( x2 + 7x + 16 ) . [ x . ( x + 1 ) + 6 . ( x + 1 ) ]
= ( x2 + 7x + 16 ) . ( x + 1 ) . ( x + 6 )