c) \(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^4+x^2+1+2x^3+2x^2+2x\)
\(=\left(x+1\right)^4+x^4+3x^2+1+2x^3+2x\)
a) \(x^4-7x^3+14x^2-7x+1\)(1)
Giả sử x khác 0, khi đó :
\(\left(1\right)\Leftrightarrow x^2\left(x^2-7x+14-\dfrac{7}{x}+\dfrac{1}{x^2}\right)\)
\(\Leftrightarrow x^2\left[\left(x^2+\dfrac{1}{x^2}\right)-7\left(x+\dfrac{1}{x}\right)+14\right]\)
\(\Leftrightarrow x^2\left[\left(x^2+2\cdot x\cdot\dfrac{1}{x}+\dfrac{2}{x^2}\right)-2-7\left(x+\dfrac{1}{x}\right)+14\right]\)
\(\Leftrightarrow x^2\left[\left(x+\dfrac{1}{x}\right)^2-7\left(x+\dfrac{1}{x}\right)+12\right]\)
Đặt \(x+\dfrac{1}{x}=a\)
pt \(\Leftrightarrow x^2\left(a^2-7a+12\right)\)
\(\Leftrightarrow x^2\left(a^2-3a-4a+12\right)\)
\(\Leftrightarrow x^2\left[a\left(a-3\right)-4\left(a-3\right)\right]\)
\(\Leftrightarrow x^2\left(a-3\right)\left(a-4\right)\)
\(\Leftrightarrow x^2\left(x+\dfrac{1}{x}-3\right)\left(x+\dfrac{1}{x}-4\right)\)