\(x^2-10x+16=x^2-8x-2x+16=x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x-2\right)\)
\(x^2-2x-15=x^2-5x+3x-15=x\left(x-5\right)+3\left(x-5\right)=\left(x-5\right)\left(x+3\right)\)
\(2x^2+7x+3=2x^2+x+6x+3=x\left(2x+1\right)+3\left(2x+1\right)=\left(x+3\right)\left(2x+1\right)\)
a) \(x^2-10x+16=x^2-8x-2x+16=\left(x^2-8x\right)-\left(2x-16\right)=x\left(x-8\right)-2\left(x-8\right)=\left(x-8\right)\left(x-2\right)\)b) \(x^2-2x-15=x^2+3x-5x-15=\left(x^2+3x\right)-\left(5x+15\right)=x\left(x+3\right)-5\left(x+3\right)=\left(x+3\right)\left(x-5\right)\)c) \(2x^2+7x+3=2x^2+x+6x+3=\left(2x^2+x\right)+\left(6x+3\right)=x\left(2x+1\right)+3\left(2x+1\right)=\left(2x+1\right)\left(x+3\right)\)