Lời giải:
l)
\(x^4+x^2+1\)
\(=x^4-x+x^2+x+1\)
\(=x(x^3-1)+(x^2+x+1)=x(x-1)(x^2+x+1)+(x^2+x+1)\)
\(=(x^2+x+1)[x(x-1)+1]=(x^2+x+1)(x^2-x+1)\)
m)
\((x^2-8)^2+36=x^4-16x^2+100\)
\(=(x^4+100+20x^2)-36x^2\)
\(=(x^2+10)^2-(6x)^2\)
\(=(x^2+10-6x)(x^2+10+6x)\)
n)
\(4x^4+81=(2x^2)^2+9^2+2.2x^2.9-2.2x^2.9\)
\(=(2x^2+9)^2-(6x)^2\)
\(=(2x^2+9-6x)(2x^2+9+6x)\)