P=(\(\frac{X+2}{X\sqrt{X}-1}+\frac{\sqrt{X}}{X+\sqrt{X}+1}+\frac{1}{1-\sqrt{X}}\)):\(\frac{\sqrt{X}-1}{2}\) Giups mình vs
Cho \(x=\frac{2}{\frac{1}{\sqrt{\sqrt{2}+1}-1}-\frac{1}{\sqrt{\sqrt{2}+1}+1}}\)
Tính giá trị biểu thức \(B=\left(x^4-x^3-x^2+2x-1\right)^{2011}\)
Tìm GTNN của biểu thức :
A =\(\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\) với x≥1 ,y≥2 ,z≥3
Giải phương trình:
a) \(x^2+\sqrt{x+1}=1\)
b)\(\sqrt{3+x}+\sqrt{6-x}=3\)
c)\(\sqrt{3x-2}+\sqrt{x-1}=3\)
d)\(\sqrt{3+x}-\sqrt{2-x}=1\)
e)\(\sqrt{x+9}=5-\sqrt{2x+4}\)
f)\(\sqrt{3x+4}-\sqrt{2x-1}=\sqrt{x+3}\)
g)\(x-\sqrt{4x-3}=2\)
1/Giải phương trình:
a. \(3x+4y=5\sqrt{x^2+y^2}\)
b. \(\dfrac{xy\sqrt{z-5}+xz\sqrt{y-4}+yz\sqrt{x-3}}{xyz}=\dfrac{10\sqrt{3}+15+6\sqrt{5}}{60}\)
c. \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{2018}{2019}\)
d.\(\sqrt{x+x^2}+\sqrt{x-x^2}=x+1\)
e. \(\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-1}}{y}=1\)
2/Giải phương trình:
a.\(\sqrt{x-2}-\sqrt{2x-3}=\dfrac{1-x}{2x-3}\)
b.\(x^2+\dfrac{x^2}{\left(x+1\right)^2}=3\)
Rút gọn B
\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)
giải hệ phương trình \(\left\{{}\begin{matrix}\sqrt{x-1}+2\sqrt{y+2}=3\\\frac{1}{\sqrt{x+1}}-\frac{3}{\sqrt{y+2}}=-2\end{matrix}\right.\)
\(P=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{2}}{\sqrt{x}-2}+\frac{2+5\sqrt{x}}{4-x}\)
a, nêu đk để xác định và rút gọn biểu thức P
b, tính giá trị của P khi x=\(\frac{1}{4}\)
c, tìm x để P < 2
CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.