\(\int\left(x^3+x\right)dx=\frac{x^4}{4}+\frac{x^2}{2}+C\)
Chọn D
\(\int\left(x^3+x\right)dx=\frac{x^4}{4}+\frac{x^2}{2}+C\)
Chọn D
Hàm số nào bên dưới không là nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2-1}{x^2}\)
A. F(x)=\(\dfrac{x^2-x+1}{x}\)
B. F(x)=\(\dfrac{x^2+1}{x}\)
C. F(x)=\(\dfrac{x^2+2x+1}{x}\)
D. F(x)\(=\dfrac{x^2-1}{x}\)
CMR \(F\left(x\right)=ln\dfrac{x^2-x\sqrt{2}+1}{x^2+x\sqrt{2}+1}\) là 1 nguyên hàm của hàm số \(f\left(x\right)=\dfrac{2\sqrt{2}\left(x^2-1\right)}{x^4+1}\) tren R
Cíu iem với anh Lâm ơi, 2 cách nhé anh :3
Tìm mọi nguyên hàm của hàm số \(f\left(x\right)=3e^{2x+1}+\frac{1}{\cos^{2\left(\frac{\Pi x}{4}\right)}}\)
Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)
a) 1
b) 2
c) 4
d) 5
Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\)
a) \(\frac{2}{3}\)
b) \(1\)
c) \(0\)
d) \(\frac{5}{4}\)
Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\) và \(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng
a) \(0\)
b) \(2\pi\)
c) \(3\pi\)
d) \(9,425\)
Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng
a) 1
b) \(-\frac{ln\left(2^e\right)}{2}+1\)
c) \(1-\frac{ln\left(3^e\right)}{3}\)
d) Đáp án khác
Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\) và \(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng
a) \(\frac{5}{3}\)
b) \(\frac{3}{4}\)
c) \(\frac{3}{5}\)
d) \(\frac{4}{3}\)
Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)
Câu 41: Cho hàm số \(f\left(x\right)\) liên tục trên R và thoả mãn \(f\left(0\right)=0\) và \(f\left(x\right)f’\left(\frac{1}{x^2+1}\right)\left(x^2+1\right)=2x^4+4x^3+4x^2+8x\). Tính \(\int\limits^3_0f\left(x\right)dx\)
a) 0 b) 18 c) \(\frac{117}{4}\) d) 15
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}2\sin^2x+1,x< 0\\2^x;x\ge0\end{matrix}\right.\). Giả sử \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) trên \(R\) và thỏa mãn điều kiện \(F\left(1\right)=\dfrac{2}{ln2}\). Tính \(F\left(-\pi\right)\)
A. \(F\left(-\pi\right)=-2\pi+\dfrac{1}{ln2}\) B. \(F\left(-\pi\right)=-2\pi-\dfrac{1}{ln2}\)
C. \(F\left(-\pi\right)=-\pi-\dfrac{1}{ln2}\) D. \(F\left(-\pi\right)=-2\pi\)
Mình cần bài giải ạ, mình cảm ơn nhiều ♥
cho \(\int f\left(4x\right)dx\) = x2+3x+C. Mệnh đề nào sau đây đúng?
A. \(\int f\left(x+2\right)dx\) =x2+7x+C
B.\(\int f\left(x+2\right)dx\) =\(\frac{x^2}{2}\)+4x+C
C.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+2x+C
D.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+4x+C
Giúp mình bài này với, cám ơn mọi người nhiều
Cho hàm số \(f\left(x\right)\) có đạo hàm trên R thỏa: \(\left(x+2\right)f\left(x\right)+\left(x+1\right)f'\left(x\right)=e^x\) và \(f\left(0\right)=\frac{1}{2}\). Tính \(f\left(2\right)\).
A. \(\frac{e}{3}\)
B. \(\frac{e}{6}\)
C. \(\frac{e^2}{3}\)
D. \(\frac{e^2}{6}\)