Chọn \(t=0\) lúc \(x=4\sqrt{3}\) đang tăng
\(cos\Delta\varphi=\dfrac{4\sqrt{3}}{8}=\dfrac{\sqrt{3}}{2}\\ \Delta\varphi=\dfrac{n}{6}=0-\varphi_o\\ \Rightarrow\varphi_o=-\dfrac{n}{6}\\ x=8cos\left(\dfrac{4n}{3}t+\dfrac{n}{6}\right)\\ v=x'=-\dfrac{32n}{3}sin\left(\dfrac{4nt}{3}-\dfrac{n}{6}\right)\)
Tại \(\Delta t=5,125s\)
\(x=8cos\left(\dfrac{4n}{3}.5,125-\dfrac{n}{6}\right)=-4\\ v=-\dfrac{32n}{3}sin\left(\dfrac{4n.5,125}{3}-\dfrac{n}{6}\right)\\ =-\dfrac{16n\sqrt{3}}{3}\left(\dfrac{m}{s}\right)\)