Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của thửa ruộng đó(Điều kiện: a>0; b>0; \(a\ge b\))
Vì chiều dài lớn hơn chiều rộng 5m nên ta có phương trình: \(a-b=5\)(1)
Diện tích ban đầu của thửa ruộng là: \(a\cdot b\left(m^2\right)\)
Vì khi giảm chiều dài đi 5m và giảm chiều rộng đi 4m thì diện tích mảnh đất giảm đi \(180m^2\)nên ta có phương trình:
\(\left(a-5\right)\left(b-4\right)=ab-180\)
\(\Leftrightarrow ab-4a-5b+20-ab+180=0\)
\(\Leftrightarrow-4a-5b+200=0\)
\(\Leftrightarrow-4a-5b=-200\)
\(\Leftrightarrow4a+5b=200\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a-b=5\\4a+5b=200\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a-4b=20\\4a+5b=200\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-9b=-180\\a-b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=5+b=5+20=25\end{matrix}\right.\)(thỏa ĐK)
Diện tích của thửa ruộng đó là:
\(S=a\cdot b=25\cdot20=500\left(m^2\right)\)
Gọi chiều dài của mảnh đất là x
chiều rộng của mảnh đất là y (điều kiện :x>y>5)
Chiều dài lớn hơn chiều rộng 5m nên ta có phương trình : x-y=5 (1)
Nếu chiều rộng giảm đi 4m ,chiều dài giảm đi 5 m thì diện tích giảm đi 180m^2 nên ta có phương trình: ( x-5)(y-4)=xy-180 <=>xy -4x-5y+20=xy-180<=>-4x-5y=-200 (2)
tỪ (1),(2) TA CÓ HỆ PHƯƠNG TRÌNH : x-y=5 và -4x-5y=-200=> x=25,y=20 (thỏa mãn điều kiện)
Vậy S HCN đó là 25.20=500 (m^2)