Bài 5:
a: Xét tứ giác ABEC có
I là trung điểm chung của AE và BC
=>ABEC là hình bình hành
=>AB=EC
b: Vì ABEC là hình bình hành
nên AC//BE
c: Xét tứ giác AMEN có
AM//EN
AM=EN
Do đó; AMEN là hình bình hành
=>AE cắt NM tại trung điểm của mỗi đường
=>M,I,N thẳng hàng
Bài 2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x+y}{2+3}=\dfrac{30}{5}=6\)
=>x=12; y=18
b: Đặt x/2=y/3=k
=>x=2k; y=3k
xy=54
=>6k^2=54
=>k^2=9
TH1: k=3
=>x=6; y=9
TH2: k=-3
=>x=-6; y=-9
c: x/2=y/3
=>x/8=y/12
y/4=z/5
=>y/12=z/15
=>x/8=y/12=z/15
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{3x+2y-4z}{3\cdot8+2\cdot12-4\cdot15}=\dfrac{-24}{-12}=2\)
=>x=16; y=24; z=30
d: 2x=3y=4z
=>x/6=y/4=z/3=k
=>x=6k; y=4k; z=3k
\(A=\dfrac{5x+7y-3z}{3x-2y+5z}\)
\(=\dfrac{30k+28k-9k}{18k-8k+15k}=\dfrac{49}{25}\)