Giải bất phương trình:
4^(3^x) < 3^(4^x)
Tìm điều kiện:
\(\sqrt{\log_{x} ((x^3)+1) \log_{x+1} (x+2)}\)
Tổng tất cả các nghiệm nguyên của bất phương trình \(2log_{2}\sqrt{x+1}\leq2- log_{2}(x-2) \)
giải pt
\(2^{2x}-\sqrt{2^x+6}=6\) , \(8^x+1=2\sqrt[3]{2^{x+1}-1}\)
Giải bất phương trình: \((x-3)^{2x^2-7x}>1\)
Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
Giải các bất phương trình mũ sau:
a) \(3^{\left|x-2\right|}< 9\) b) \(4^{\left|x+1\right|}>16\)
c) \(2^{-x^2+3x}< 4\) d) \(\left(\dfrac{7}{9}\right)^{2x^2-3x}\ge\dfrac{9}{7}\)
e) \(11^{\sqrt{x+6}}\ge11^x\) g) \(2^{2x-1}+2^{2x-2}+2^{2x-3}\ge448\)
h) \(16^x-4^x-6\le0\) i) \(\dfrac{3^x}{3^x-2}< 3\)
tìm m để bất phương trình sau có nghiệm
\(\begin{cases} (2x+1)[ln(x+1)-lnx]=(2y+1)[ln(y+1)-lny]\\ \sqrt{y-1} -2 \sqrt[4]{(y+1)(x-1)} +m\sqrt{x+1}=0 \end{cases}\)
Giải bất phương trình : \(3log_3\left(1+\sqrt{a}+\sqrt[3]{a}\right)>2log_2\sqrt{a}\)
giải bất phương trình loga
\(\sqrt{\log_{x} \sqrt{(7-x)}} . \log_{7}x<-1\)