Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=m\)
=> a = bm ; c = dm
Suy ra :
\(\dfrac{ab}{cd}=\dfrac{bm.b}{dm.d}=\dfrac{b^2.m}{d^3.m}=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bm\right)^2+b^2}{\left(dm\right)^2+d^2}=\dfrac{b^2.m^2+b^2.1}{d^2.m^2+d^2.1}\)= \(\dfrac{b^2.\left(m^2+1\right)}{d^2.\left(m^2+1\right)}=\dfrac{b^2}{d^2}\)(2)
Từ (1) và (2)
=> \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) đpcm
ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
Lại có : \(\dfrac{a^2}{c^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{c^2+d^2}\) ( theo tính chất của dãy tỉ số bằng nhau )
Suy ra : \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)(đpcm)