1) \(\left(\dfrac{-13}{17}-\dfrac{31}{52}\right)-\left(\dfrac{73}{52}-\dfrac{13}{17}+\dfrac{5}{6}\right)-\dfrac{3}{4}\)
\(=\dfrac{-13}{17}-\dfrac{31}{52}-\dfrac{73}{52}+\dfrac{13}{17}-\dfrac{5}{6}-\dfrac{3}{4}\)
\(=\left(\dfrac{-13}{17}+\dfrac{13}{17}\right)-\left(\dfrac{31}{52}+\dfrac{73}{52}\right)-\left(\dfrac{5}{6}+\dfrac{3}{4}\right)\)
\(=0-2-\dfrac{19}{12}\)
\(=-2-\dfrac{19}{12}\)
\(=\dfrac{-43}{12}\)
2) \(\dfrac{1}{7}.\dfrac{1}{3}+\dfrac{1}{7}.\dfrac{1}{2}-\dfrac{1}{7}\)
\(=\dfrac{1}{7}\left(\dfrac{1}{3}+\dfrac{1}{2}-1\right)\)
\(=\dfrac{1}{7}.-\dfrac{1}{6}\)
\(=-\dfrac{1}{42}\)
3) \(\dfrac{13}{123}.\dfrac{1}{2}-\dfrac{1}{3}.\dfrac{13}{123}+\dfrac{1}{6}.\dfrac{110}{123}\)
\(=\dfrac{13}{123}.\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\dfrac{1}{6}.\dfrac{110}{123}\)
\(=\dfrac{13}{123}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{110}{123}\)
\(=\dfrac{1}{6}\left(\dfrac{13}{123}+\dfrac{110}{123}\right)\)
\(=\dfrac{1}{6}.\dfrac{123}{123}\)
\(=\dfrac{1}{6}\)
2/ \(\dfrac{1}{7}.\dfrac{1}{3}+\dfrac{1}{7}.\dfrac{1}{2}-\dfrac{1}{7}\)
= \(\dfrac{1}{7}\left(\dfrac{1}{3}+\dfrac{1}{2}-1\right)\)
= \(\dfrac{1}{7}\left(\dfrac{2}{6}+\dfrac{3}{6}-\dfrac{6}{6}\right)\)
= \(\dfrac{1}{7}.\dfrac{-1}{6}\)
= \(\dfrac{1.\left(-1\right)}{7.6}\)
= \(\dfrac{-1}{42}\)