Ta có :
\(sin\dfrac{A}{2}cos^3\dfrac{B}{2}sin\dfrac{B}{2}cos^3\dfrac{A}{2}=0\Leftrightarrow\dfrac{sin\dfrac{A}{2}}{cos^2\dfrac{A}{2}}=\dfrac{sin\dfrac{B}{2}}{cos^3\dfrac{B}{2}}\)
<=> \(tan\dfrac{A}{2}\left(1+tan^2\dfrac{A}{2}\right)=tan\dfrac{B}{2}\left(1+tan^2\dfrac{B}{2}\right)\)
<=> \(tan\dfrac{A}{2}=tan\dfrac{B}{2}\Leftrightarrow\dfrac{A}{2}=\dfrac{B}{2}\Leftrightarrow A=B\)
Vậy tam giác đó là tam giác cân tại C
= > chọn C