\(2x^2+6x=2x\left(x+3\right)\)
\(x^2-9=\left(x-3\right)\left(x+3\right)\)
=> MTC:\(2x\left(x+3\right)\left(x-3\right)\)
\(2x^2+6x=2x\left(x+3\right)\)
\(x^2-9=\left(x-3\right)\left(x+3\right)\)
=> MTC:\(2x\left(x+3\right)\left(x-3\right)\)
tìm điều kiện để các phân thức sau có nghĩa và tìm mẫu chung của chúng:
a,\(\dfrac{5}{2x-4};\dfrac{4}{3x-9};\dfrac{7}{50-25x}\)
b,\(\dfrac{3}{2x+6};\dfrac{x-2}{x^2+6x+9}\)
c,\(\dfrac{x^4+1}{x^2-1};x^2+1\)
Tính:
\(a,\dfrac{x+3}{2x-1}-\dfrac{x^2-5}{4x^2-4x+1}-\dfrac{2x^3+5x^2-x-1}{8x^3-12x^2+6x-1}\)
\(b,\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
Thực hiện phép tính và rút gọn:
a) \(\dfrac{x-2}{6x^2-6x}-\dfrac{1}{4x^2-4}\)
b) \(\dfrac{\left(x+1\right)\left(x^2-2x+1\right)}{6x^3+6}:\dfrac{x^2-1}{4x^2-4x+4}\)
Cho biểu thức \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\). Tìm các giá trị của x để P<0
1) Chứng minh biểu thứ A = ( \(\dfrac{2x^3+2}{x+1}-2x\))(\(\dfrac{x^3-1}{x-1}+x\)) ( x \(\ne\)1 và -2) luôn luôn dương với mọi x\(\ne\)\(\pm\)1
2) Tìm Min của biểu thức y = \(\dfrac{x^4+4x^2+10}{x^4+6x^2+9}\)
Rút gọn phân thức:
a, \(\dfrac{x^3+x^2-4x-4}{x^3+7x^2+6x^3-6x+1}\)
b, \(\dfrac{x^4+x^3-x-1}{x^4+x^3+2x^2+x+1}\)
c, \(\dfrac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(C=\dfrac{x^4+3x^3+2x^2+6x-2}{x^2+2}\)
Qui đồng mẫu thức các phân thức:
\(a,\dfrac{1}{6x^2y^3};\dfrac{-5}{21xy^2};\dfrac{3}{14x^4y}\)
\(b,\dfrac{2}{x^3-y^3};\dfrac{2x+1}{x^2-y^2}\)
Qui đồng mẫu thức các phân thức:
\(\dfrac{x}{x^2+2x-15};\dfrac{1}{x^2+5x-6}\) và \(\dfrac{1}{-x^2+4x-3}\)