Cho hàm số y = x\(^2\) có đồ thị (P\(_1\)) và hàm số y = -x\(^2\) có đồ thị (P\(_2\))
a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ.
b) Gọi A là một điểm bất kì trên (P\(_1\)) và B là điểm đối xứng với A qua trục hoành. Chứng minh rằng điểm B nằm trên (P\(_2\)).
Trên mặt phẳng Oxy , cho (P) : y= \(\dfrac{1}{2}\) x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
Trên mặt phẳng Oxy , cho (P) : y= 1212 x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
cho hàm số y= \(\dfrac{1}{2}x+1\) (d\(_1\)) và y= -x -1 (d\(_2\))
a, vẽ đồ thị 2 hàm số trên cùng 1 mặt phẳng tọa độ
b, tìm số đo góc alpha mà (d\(_1\)) tạo với trục OX và số đo góc beta mà (d\(_2\)) tạo với trục OX
Bài 1: Cho mặt phẳng tọa độ Oxy cho (d): y= 2mx + 2m + 1 và Parabol (p):y= x2
a) tìm m để (d) cắt (P) tại 2 điểm phân iệt A, B
b) Gọi x1, x2 là hoành độ của A và B, tìm m sao cho |x1-x2| = 2
(mink đag cần gấp)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn: (x1+1)(x2+1)=0
Cho hàm số y = 3x2 – 2x + m. ( 1 )
a) Tìm giá trị của m để đồ thị hàm số ( 1 ) cắt trục hoành tại điểm có hoành độ là -1.
b) Với giá trị m tìm được ở câu a), tìm toạ độ giao điểm của đồ thị với trục tung.
Cho ba hàm số: \(y=\dfrac{1}{2}x^2;y=x^2;y=2x^2.\)
a) Vẽ đồ thị của ba hàm số này trên cùng một mặt phẳng tọa độ.
b) Tìm ba điểm A, B ,C có cùng hoành độ x = -1,5 theo thứ tự nằm trêm ba đồ thị. Xác định tung độ tương ứng của chúng.
c) Tìm ba điểm A'; B';C' có cùng hoành độ x = 1,5 theo thứ tự nằm trên ba đồ thị. Kiểm tra tính đối xứng của A và A'; B và B'; C và C'.
d) Với mỗi hàm số trên, hãy tìm giá trị của x để hàm số đó có giá trị nhỏ nhất.
cho đường thẳng (d) : y=mx+m+1 và parabol (P) : y=x^2 . Tìm m để (d) cắt (P) tại hai điểm có hoành độ x1,x2 nằm khác phía đối vs trục tung thỏa mãn điều kiện : 2x1-3x2=5