Bài 1: Cho parabol (P) : y = x2 và đường thẳng (d) : y= 3mx + 1 - m2 ( m là tham số).
Tìm m để (d) m cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 thõa mãn : x1 + x2 = 2x1x2
(mink đag cần gấp)
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn: (x1+1)(x2+1)=0
Trên mặt phẳng Oxy , cho (P) : y= \(\dfrac{1}{2}\) x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
Trên mặt phẳng Oxy , cho (P) : y= 1212 x2 và đường thẳng (d) : y= x-m ( m là tham số)
a) Với m=0, tìm tọa độ giao điểm (P) và (d) bằng phương pháp đại số
b) Tìm điều kiện của m để (d) cắt (P) tại 2 điểm phân biệt
(mink đag cần rất gấp)
Bài 1: Cho parabol (P) : y = x2 và đường thẳng (d) : y= 3mx + 1 - m2 ( m là tham số)
a) TÌm m để (d) đường thẳng đi qua A( 1; -9)
b) Tìm m để (d) m cắt (P) tại 2 điểm phân biệt có hoành độ x1; x2 thõa mãn x1 + x2 = 2x1x2
2) Cho hàm số 2 y=x2 có đồ thị là parabol (P), hàm số y=(m- 2)x- m+3 có đồ thị là đường thẳng (d).a) Tìm giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt.b) Gọi A và B là hai giao điểm của (d) và (P), có hoành độ lần lượt là x1 ; x2 . Tìm các giá trị của m để x1,x2 là độ dài hai cạnh của một tam giác vuông cân.
Trong mặt phẳng tọa oxy cho parabol (P) y= -x2 và đường thẳng (d) y= mx +2 ( m là tham số ) a) Tìm m để (d) cắt (P) tại 1 điểm duy nhất
b) Cho 2 điểm A(-2;m) và B(1;n) . Tìm m,m để A thuộc (P) , B thuộc (d)
c) Gọi H là chân đường vuông góc kẻ từ O đến (d) . Tìm m để độ dài đoạn OH lớn nhất
Bai1 Cho parabol (p): y=x^2 và đg thg (d):y=2mx-2m+5
Tìm m để d cắt p tại hai điểm có hoành độ x1;x2 thỏa mãn x1^2+x2^2=34
cho đường thẳng (d) : y=mx+m+1 và parabol (P) : y=x^2 . Tìm m để (d) cắt (P) tại hai điểm có hoành độ x1,x2 nằm khác phía đối vs trục tung thỏa mãn điều kiện : 2x1-3x2=5