chả biết nx, sao t giải nháp nhanh nó tìm ra m nhưng ko thoả đk, chắc sai r
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-2=0\) (*)
ta có: \(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)\)
=\(m^2-2m+1-m^2+m+2=3-m\)
để phương trình có nghiệm thì: \(\Delta'\ge0\Leftrightarrow m\le3\)
theo hệ thức vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}\\x_1.x_2=\frac{c}{a}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-1\right)}{m+1}\left(1\right)\\x_1.x_2=\frac{m-2}{m+1}\left(2\right)\end{matrix}\right.\)
theo bài ra ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow\frac{x_1+x_2}{x_1.x_2}=\frac{7}{4}\)
\(\Leftrightarrow4.\left(x_1+x_2\right)=7.x_1.x_2\left(3\right)\)
từ (1) ;(2) và (3) ta có : \(\frac{8\left(m-1\right)}{m+1}-\frac{7\left(m-2\right)}{m+1}=0\)
\(\Leftrightarrow\frac{m+6}{m+1}=0\Leftrightarrow m=-6\left(tm\right)\)
vì m+1 khác 0
vậy m=-6