\(M=1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
\(=1-\frac{5}{14}-\frac{5}{84}-\frac{5}{204}-\frac{5}{374}\left(\text{(}2\sqrt{21}\text{)}^2=2^2.21=84\right)\)
\(=1-\frac{5}{2.7}-\frac{5}{7.12}-\frac{5}{12.17}-\frac{5}{17.22}\)
\(=1-\frac{1}{2}+\frac{1}{7}-\frac{1}{7}+\frac{1}{12}-\frac{1}{12}+\frac{1}{17}-\frac{1}{17}+\frac{1}{22}\)
\(=1-\frac{1}{2}+\frac{1}{22}\)
\(=\frac{22-11+1}{22}=\frac{12}{22}=\frac{6}{11}\)
Vậy M = 6/11.