\(\lim\dfrac{2n^2-1}{4-6n}\) hay \(\lim\dfrac{2n-1}{4-6n}\) vậy nhỉ?
\(\lim\dfrac{2n^2-1}{4-6n}=\lim\dfrac{2n-\dfrac{1}{n}}{\dfrac{4}{n}-6}=\dfrac{+\infty}{-6}=-\infty\)
\(\lim\dfrac{2n^2-1}{4-6n}\) hay \(\lim\dfrac{2n-1}{4-6n}\) vậy nhỉ?
\(\lim\dfrac{2n^2-1}{4-6n}=\lim\dfrac{2n-\dfrac{1}{n}}{\dfrac{4}{n}-6}=\dfrac{+\infty}{-6}=-\infty\)
Tìm các giới hạn sau:
\(a,lim\left(6n^4-n+1\right)\)
\(b,lim\left(2-3n+7n^2\right)\)
Tìm giới hạn dãy số :
\(a,lim\dfrac{5n+1}{2n}\\ b,lim\dfrac{6n^2+8n+1}{5n^2+3}\\ c,lim\dfrac{3^n+2^n}{4.3^n}\\ d,lim\dfrac{\sqrt{n^2+5n+3}}{6n+2}\)
a) lim n-1/ 2n+7
b) lim 4n^2 -n+1/6n^2 +1
c) lim 3n^2-n/1-n^2
d)lim 8n+1/n^2-2n+19
e) lim (căn 9n^2 -4 ) +2n /2n+7
Tìm các giới hạn sau:
\(a,\left(8n-3n^9+1\right)\)
\(b,lim\left(6n^4-n+1\right)\)
\(c,lim\left(2-3n+7n^2\right)\)
a) lim \(\left(2n-3-\sqrt[3]{8n^3-6n^2+4}\right)\)
b) lim \(n+1-\sqrt[3]{n^3-3n+1}\)
Tính \(lim\sqrt[3]{27n^3-6n+n}-\sqrt{9n^2+1}\)
a) \(lim\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
b) \(lim\frac{\left(2n-1\right)\left(n+1\right)\left(3n+4\right)}{\left(5-6n\right)^3}\)
c) \(lim\left(\sqrt{n^2+5n+1}-\sqrt{n^2-2}\right)\)
d) \(lim\frac{5\cdot3^n-6^{n+1}}{4\cdot2^n+6^n}\)
e) \(lim\left(-2n^3-3n^2+5n-2020\right)\)
Tìm các giới hạn sau :
a) \(\lim\limits\dfrac{6n-1}{3n+2}\)
b) \(\lim\limits\dfrac{3n^2+n-5}{2n^2+1}\)
c) \(\lim\limits\dfrac{3^n+5.4^n}{4^n+2^n}\)
d) \(\lim\limits\dfrac{\sqrt{9n^2-n+1}}{4n-2}\)
\(lim\left(\sqrt[3]{n-n^3}+\sqrt{n^2+3n}\right)\)
\(lim\left(\sqrt{n-2\sqrt{n}}-\sqrt{n+4}\right)\)
\(lim\left(\sqrt[3]{3n^2+n^3}-n\right)\)
\(lim\left(\sqrt[3]{n^3+6n}-\sqrt{n^2-4n}\right)\)
\(lim\frac{-3^{n+1}+4^{n+1}}{5.3^n+3.2^{2n-1}}\)
\(lim\left(\frac{3^{2n}-5^{n+1}+7^{n+1}}{3^{n+2}+5^n+2^{3n+2}}\right)\)
\(lim\left(\frac{6^{n+1}+3^{2n+5}}{3^{2n+3}-2^{2n-1}}\right)\)