A box contains 50 blue square cards whose the side length are 2 cm, 4 cm, 6 cm, ..., 100 cm, respectively and 50 red square cards with side lengths are 1 cm, 3 cm, 5 cm, ..., 99 cm, respectively. The total area of the blue cards is greater than the total area of the red care is .... cm2
Let ABCD be a trapezoid with bases AB, CD and O be the intersection of AC and BD. If the areas of triangle OAB, triangle OCD are 16cm2, 40cm2respectively and M is the midpoint of BD, then the area of the triangle AMD is .........cm2.
Given that ABCD is a rectangle with AB = 12 cm, AD = 6 cm. M and N are respectively midpoint of segments BC and CD. Find the area of triangle AMN in square centimeters.
ABCD is a square,AB=a,AC intersects BC at O. M and N are points on the line segments BC anh DC respectively satisfying that MON=45.Then BMxDN=....a^2
1) The rectangle has length p and breath q (cm), where p and q are intergers. If p and q satisfy the equation pq+q=13 + q2
then the maxnium area of the rectangle
2) Let a,b and c be positive intergers such that ab + bc=518 and ab-ac=360. Find the largest value of the product abc.
P/s: As you may now, These are some questions from the 8 round of Math Violympic. Plz help me as much as you can! Thanks for all!
A trapezuim ABCD has two parallel sides AB and CD. The diagonals AC and BD intersect at E. If the areas of triangle CDE and CDB are 1 and 4 respectively, what is the area of the trapezuim ABCD
Let ABC be an isoceles triangle (AB = AC) and its area is 501cm2. BD is the internal bisector of the angle ABC (D ∈ AC), E is a point on the opposite ray of CA such that CE = CB. I is a point on BC such that CI = 1/2 BI. The line EI meets AB at K, BD meets KC at H. Find the area of the triangle AHC.
Given a trapezoid ABCD with base , and . Let M, N be respectively the midpoints of the segments . Evaluate MN.
Answer: cm