\(\left|x+\frac{1}{3}\right|=\frac{1}{3}\)
\(\left[{}\begin{matrix}x+\frac{1}{3}=\frac{1}{3}\\x+\frac{1}{3}=\frac{-1}{3}\end{matrix}\right.\)
Vậy x\(\in\left\{0;\frac{-2}{3}\right\}\)
\(\left|x+\frac{1}{3}\right|=\frac{1}{3}\)
\(\left[{}\begin{matrix}x+\frac{1}{3}=\frac{1}{3}\\x+\frac{1}{3}=\frac{-1}{3}\end{matrix}\right.\)
Vậy x\(\in\left\{0;\frac{-2}{3}\right\}\)
Bài 1: Tìm x biết: \(\left|x-3\right|+\left|x+2\right|=7\)
Bài 2: CMR: \(\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{999}}+\frac{1}{4^{1000}}< \frac{1}{3}\)
Bài 3: Tìm x biết:
a) \(x\left(x-2\right)\left(x-3\right)>0\)
b) \(x\left(x-2\right)\left(x-3\right)< 0\)
\(\left(\frac{2}{3}x-1\right).\left(\frac{3}{4}x+\frac{1}{2}\right)=0\)
\(\left(x-1\right)^{^{ }x-2}=\left(x-1\right)^{x+6}\)
1.tìm x
a.\(\frac{-5}{8}+x=\frac{4}{9}\)
b.\(1^3_4.x+1^1_2=-\frac{4}{5}\)
c.\(\frac{1}{4}+\frac{3}{4}x=\frac{3}{4}\)
d.\(x.\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
e.\(\frac{3}{35}-\left(\frac{3}{5}+x\right)=\frac{2}{7}\)
f.\(\frac{3}{7}+\frac{1}{7}:x=\frac{3}{14}\)
g.\(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
Bài 1: Tìm x biết:
a, \(x.\cdot\left(\frac{1}{4}+\frac{1}{5}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)=0\)
b, \(\left(5x-1\right).\left(2x-\frac{1}{3}\right)=0\)
c, \(\frac{3x+2}{5x+7}=\frac{3x-1}{5x+1}\)
d, \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
e, \(\frac{-3}{4}-\left|\frac{4}{5}-x\right|=-1\)
Bài 1: Thu gọn
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)
d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)
e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)
f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)
g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)
h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)
i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)
k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)
n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)
m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)
p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)
Bài 4: Tìm x biết:
a) \(\frac{1}{2}x+\frac{2}{3}x-1=-3\frac{1}{3}\)
b) \(\left(x-3\right)\left(4-5x\right)\left(x+3\right)=0\)
Bài 1:Tính
a)\(0,\left(3\right)+3\frac{1}{3}+0,\left(31\right)\)
b)\(\frac{4}{9}+1,2\left(31\right)-0,\left(13\right)\)
Bài 2:Tìm x biết
\(0,\left(37\right)\times x=1\)
Tính giá trị biểu thức
\(A=\left|x-\frac{1}{1\cdot2}\right|+\left|x-\frac{1}{2\cdot3}\right|+\left|x-\frac{1}{3\cdot4}\right|+...+\left|x-\frac{1}{100\cdot101}\right|+100x\)
Với \(x< 0\)
3/a)\(M\left(x\right)=\frac{1}{2}x^2-3x-x^3+3\)
\(=-x^3+\frac{1}{2}x^2-3x+3\)
\(N\left(x\right)=-4x+x^2+\frac{1}{2}x^3+6\)
\(=\frac{1}{2}x^3+x^2-4x^3+6\)
b)Ta có:\(\text{A}\left(x\right)=M\left(x\right)-N\left(x\right)\)
hay \(\text{A}\left(x\right)=\left(-x^3+\frac{1}{2}x^2-3x+3\right)-\left(\frac{1}{2}x^3+x^2-4x+6\right)\)
\(=-x^3+\frac{1}{2}x^2-3x+3-\frac{1}{2}x^3-x^2+4x-6\)
\(=-\frac{3}{2}x^3-\frac{1}{2}x^2+x-3\)
Đặt\(\text{A}\left(x\right)=0\)
\(\Rightarrow-\frac{3}{2}x^3-\frac{1}{2}x^2+x-3=0\)
\(-\frac{3}{2}x^3-\frac{1}{2}x^2=-x+3\)
\(-2\left(x^3-x^2\right)=-x+3\)
\(x^3-x^2+x=3+2=5\)
\(x^2=5\)
\(\Rightarrow x=\sqrt{5}\)
Vậy \(\text{A}\left(x\right)\) có 1 nghiệm là \(\sqrt{5}\)
Bài 31 : Tính :
a) \(\left(2^{-1}+3^{-1}\right):\left(2^{-1}-3^{-1}\right)+\left(2^{-1}.2^0\right):2^3\)
b) \(\left(-\frac{1}{3}\right)^{-1}-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
c) \(\text{[}\left(0,1\right)^2\text{]}^0+\text{[}\left(\frac{1}{7}\right)^1\text{]}^2.\frac{1}{49}.\text{[}\left(2^3\right)^3:2^5\text{]}\)
Mong các cao nhân giúp ak , đang cần gấp