Đặt \(x^2+6x+7=t\)
Bài toán trở thành tìm m để phương trình: \(\left(t-2\right)\left(t+1\right)=m-1\) (1) có nghiệm \(t< 0\)
\(\left(1\right)\Leftrightarrow t^2-t-1=m\)
Xét hàm \(f\left(t\right)=t^2-t-1\)
\(f\left(0\right)=-1\) và hàm số nghịch biến khi \(t< 0\)
\(\Rightarrow f\left(t\right)>-1\) \(\forall t< 0\)
\(\Rightarrow\) phương trình \(f\left(t\right)=m\) có nghiệm \(t< 0\) khi và chỉ khi \(m>-1\)
Vậy với \(m>-1\) thì pt đã cho có nghiệm thỏa \(x^2+6x+7< 0\)