Thực hiện phép tính
a)\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
b)\(\left(\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}\right)\)\(\left(\sqrt[3]{5}+\sqrt[3]{2}\right)\)
Thực hiện các phép tính sau:
a)\(\sqrt[3]{\left(4-2\sqrt[3]{3}\right)\left(\sqrt[3]{3}-1\right)}\)
b)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
Tính:
a) \(\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
b) \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
c) \(\left(\sqrt[3]{4}+1\right)^3-\left(\sqrt[3]{4}-1\right)^3\)
d) \(\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
e) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
Mọi người giúp em với ạ!!!!!!!!!!!
so sánh
\(;\sqrt{2}+1vs\sqrt[3]{7+5\sqrt{2};}\) \(-6\sqrt[3]{7}\&7\sqrt[3]{\left(-6\right)}\)\(;\sqrt[3]{4}+\sqrt[3]{7}\&\sqrt[3]{11}\)\(;\sqrt[3]{10}-2vs\sqrt[3]{2}\)
Tính:a)\(\left(\dfrac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\dfrac{1}{3}}\right)\):\(2\sqrt[3]{\dfrac{1}{3}}\)
b)\(\left(\sqrt[3]{4}+1\right)^3\)-\(\left(\sqrt[3]{4}-1\right)^3\)
c)\(\left(12\sqrt[3]{2}+\sqrt[3]{16}-2\sqrt[3]{2}\right)\)\(\left(5\sqrt[3]{4}-3\sqrt[3]{\dfrac{1}{2}}\right)\)
Tính P\(=\left(x^3+12x-9\right)^{2021}\) khi \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
Rút gọn các biểu thức:
a) A= \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}\sqrt[3]{4}\)
b) B= \(\left(\frac{1}{2}\sqrt[3]{2}-\frac{1}{4}\sqrt[3]{16}\right).\sqrt[3]{4}\)
c) C= \(\sqrt[3]{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)
d) D= \(\sqrt[3]{3+3\sqrt[3]{2}+3\sqrt[3]{4}}\)
e) E= \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}+\sqrt[3]{6}-\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)