\(\Leftrightarrow\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\cdot x=\left(1+\dfrac{2011}{2}\right)+\left(1+\dfrac{2010}{3}\right)+...+\left(\dfrac{1}{2012}+1\right)+1\)
\(\Leftrightarrow x\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)=\dfrac{2013}{2}+\dfrac{2013}{3}+...+\dfrac{2013}{2013}\)
=>x=2013