Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
xy+1=7y-x\\
(xy+1)^2-xy=13y^2\end{matrix}\right.\)
\(\Rightarrow (7y-x)^2-xy=13y^2\)
\(\Leftrightarrow 36y^2-15xy+x^2=0\)
\(\Leftrightarrow (12y-x)(3y-x)=0\)
\(\Rightarrow \left[\begin{matrix} x=12y\\ x=3y\end{matrix}\right.\)
Nếu \(x=12y\). Thay vào PT(1):
\(12y.y+12y+1=7y\)
\(\Leftrightarrow 12y^2+5y+1=0\) (pt vô nghiệm)
Nếu \(x=3y\Rightarrow 3y.y+3y+1=7y\)
\(\Leftrightarrow 3y^2-4y+1=0\)
\(\Leftrightarrow (3y-1)(y-1)=0\Rightarrow \left[\begin{matrix} y=\frac{1}{3}\rightarrow x=1\\ y=1\rightarrow x=3\end{matrix}\right.\)
Vậy HPT có nghiệm \((x;y)=(1;\frac{1}{3}); (3;1)\)
Hoặc đến đoạn $36y^2-15xy+x^2=0$ nếu bạn không biết xử lý ra sao thì có thể thực hiện cách sau:
Dễ thấy $y=0$ không phải nghiệm của HPT. Do đó $y\neq 0$
Đặt $x=ty$
\(\Rightarrow 36y^2-15.ty.y+(ty)^2=0\)
\(\Leftrightarrow y^2(36-15t+t^2)=0\)
\(\Rightarrow 36-15t+t^2=0\) (do $y\neq 0$)
Đến đây ta giải PT bậc 2 một ẩn như bình thường để tìm ra mối quan hệ của $x,y$