giải hpt:
1,\(\left\{{}\begin{matrix}x^2y^2-2x+y^2=0\\2x^2-4x+3+y^3=0\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\left(x^2-xy\right)\left(xy-y^2\right)=25\\\sqrt{x^2-xy}+\sqrt{xy-y^2}=3\left(x-y\right)\end{matrix}\right.\)
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
giải HPT
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(2x-y\right)\left(y+15\right)=2xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{4x}-3y+4z^2=-2\\\sqrt{3x}+2y-3z^2=1\\-3\sqrt{x}+y+2z^2=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3y\left(1+y\right)+x^2y^2\left(2+y\right)+xy^3=30\\x^2y+x\left(1+y+y^2\right)+y=11\end{matrix}\right.\)
giải hpt: \(\left\{{}\begin{matrix}x^2+4x+y=18\\xy\left(x+1\right)\left(y+1\right)=72\end{matrix}\right.\)
Giải hệ phương trình :\(\left\{{}\begin{matrix}x^2+xy+y^2=19\left(x-y\right)^2\\x^2-xy+y^2=7\left(x-y\right)\end{matrix}\right.\)
giải hpt:
1, \(\left\{{}\begin{matrix}2\left(x-1\right)y^2+x+y=4\\\left(y-3\right)x^2+y=x+2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+y^2=2x+4\\2x+y+xy=4\end{matrix}\right.\)
Giải hệ phương trình
a)\(\left\{{}\begin{matrix}2x^3=y+1\\2y^3=x+1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+\frac{1}{y^2}+\frac{x}{y}=7\\x^2-\frac{1}{y^2}=3\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}x^2+y^2=10\\x+y=4\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}xy+x+y=19\\x^2y+xy^2=84\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2+xy+y^2=4\\x+xy+y=2\end{matrix}\right.\)
giải hpt sau
a) \(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+y^2=52\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{12}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2-xy+y^2=7\left(x-y\right)\\x^2+xy+y^2=19\left(x-y\right)^2\end{matrix}\right.\)