Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\dfrac{xy}{y+x}=\dfrac{12}{5}\\\dfrac{yz}{y+z}=\dfrac{18}{5}\\\dfrac{zx}{z+x}=\dfrac{36}{13}\end{matrix}\right.\)
giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y+z}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z+x}=\dfrac{1}{3}\\\dfrac{1}{z}+\dfrac{1}{x+y}=\dfrac{1}{4}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{x}{y}-\dfrac{y}{x}=\dfrac{5}{6}\\x^2-y^2=5\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-7}}+\dfrac{3}{\sqrt{y+6}}=\dfrac{13}{6}\\\dfrac{7}{\sqrt{x-7}}-\dfrac{2}{\sqrt{y+6}}=\dfrac{5}{3}\end{matrix}\right.\)
giải hệ phương trình nghiệm nguyên sau:\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\left(y+\dfrac{1}{y}\right)\\y=\dfrac{1}{2}\left(z+\dfrac{1}{z}\right)\\z=\dfrac{1}{2}\left(x+\dfrac{1}{x}\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{2x^2}{1+x^2}=y\\\dfrac{2y^2}{1+y^2}=z\\\dfrac{2z^2}{1+z^2}=x\end{matrix}\right.\)
Giai hệ phương trình:
\(\left\{{}\begin{matrix}x+y+z=\dfrac{1}{2}\\\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{1}{xyz}=4\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}>0\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^2\left(y-z\right)=-\dfrac{5}{3}\left(1\right)\\y^2\left(z-x\right)=3\left(2\right)\\z^2\left(x-y\right)=\dfrac{1}{3}\left(3\right)\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y+z=9\\\sqrt{x}+\sqrt{y}+\sqrt{z}=5\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\end{matrix}\right.\)
Chứng minh rằng nếu ba số x,y,z thỏa mãn hệ phương trình\(\left\{{}\begin{matrix}x+y+z=2\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{2}\end{matrix}\right.\)thì ít nhất một trong ba số x,y,z phải bằng 2
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}\dfrac{3x+2}{x-1}-\dfrac{3y-1}{y+2}=0\\\dfrac{2}{x-1}+\dfrac{3}{y+2}=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{4x-5}{x+1}+\dfrac{2y-3}{y-5}=8\\\dfrac{3}{x+1}-\dfrac{2}{y-5}=-1\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\dfrac{x+y-2}{x+1}+\dfrac{3-x}{y+1}=\dfrac{5}{4}\\\dfrac{3\left(x+y-2\right)}{x+1}-\dfrac{5-x+2y}{y+1}=\dfrac{3}{4}\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\dfrac{x-y+1}{x-3}+\dfrac{x+1}{y-3}=\dfrac{-7}{2}\\\dfrac{2\left(x-y+1\right)}{x-3}-\dfrac{x+y-2}{y-3}=-\dfrac{9}{2}\end{matrix}\right.\)
e)\(\left\{{}\begin{matrix}x^2-y^2+2y=1\\\left(x+y\right)^2-2x-2y=0\end{matrix}\right.\)
f)\(\left\{{}\begin{matrix}4x^2+y^2-4xy=4\\x^2+y^2-2\left(xy+8\right)=0\end{matrix}\right.\)