\(d_1:2x+y-2-3\sqrt{5}=0\)
\(d_2:2x+y-2-3\sqrt{5}=0\)
\(d_3:y+1=0\)
\(d_4:4x-3y-9=0\)
\(d_1:2x+y-2-3\sqrt{5}=0\)
\(d_2:2x+y-2-3\sqrt{5}=0\)
\(d_3:y+1=0\)
\(d_4:4x-3y-9=0\)
cho đường tròn (C) : x2 + y2 + 8x + 4y - 5 = 0 . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến (C) đi qua M(2;1).
cho đường tròn (C) : x2 + y2 + 8x + 4y - 5 = 0 . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến (C) đi qua M(2;1).
cho đường tròn (C) : x2 + y2 + 8x + 4y - 5 = 0 . Viết phương trình tiếp tuyến của (C) biết tiếp tuyến (C) đi qua M(2;1).
Trong mặt phẳng tọa độ Oxy cho 2 điểm A( 1;2) B (3;4) và đường thẳng (d): 3x+y-3=0
a) gọi (C1) (C2) là 2 đường tròn cùng đi qua qua 2 điểm A, B và tiếp xúc với (O). Lập phương trình của 2 đường tròn trên
b) Tìm tọa độ của điểm M trên (d) sao cho từ đó vẽ được 1 tiếp tuyến chung (d) # (d) của đường tròn (C1) và (C2)
Lập phương trình đường tròn nội tiếp tam giác ABC biết AB: 2x + y - 5 = 0 ; BC: x + 2y + 2 = 0 ; AC: 2x - 4y + 9 = 0
Cho đường tròn (C) : \(x^2+y^2-x-7y=0\) và đường thẳng d : \(3x+4y-3=0\)
a) Tìm tọa độ giao điểm của (C) và d
b) Lập phương trình tiếp tuyến với (C) tại các giao điểm đó
c) Tìm tọa độ giao điểm của hai tiếp tuyến
Cho đường tròn (C) có phương trình:
x2 + y2 – 4x + 8y – 5 = 0
a) Tìm tọa độ tâm và bán kính của (C)
b) Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c) Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng 3x – 4y + 5 = 0
1. Cho đường tròn (c) : \(x^2+y^2+6x-2y=0\) và đường thẳng d : \(x-3y-4=0\)
Tính tiếp tuyến của (C) song song với (d)
2. Tìm giá trị của m để đường thẳng \(\Delta:3x+4y+3=0\) tiếp xúc với (C) : \(\left(x-m\right)^2+y^2=9\)
3. Xác đinh m để \(\left(C_m\right):x^2+y^2-4x+2\left(m+1\right)y+3m+7=0\) là phương trình của một đường tròn
Lập phương trình tiếp tuyến \(\Delta\) của đường tròn (C) : \(x^2+y^2-6x+2y=0\) biết rằng \(\Delta\) vuông góc với đường thẳng \(d:3x-y+4=0\)