a) \((x^2-1)(x^2+2x) =x^4+2x^3-x^2-2x\)
b) \((x+3y)(x^2-2xy+y) = x^3- 2x^2y+xy+3x^2y-6xy^2+3y^2\)
=\(x^3+xy+x^2y+6xy^2+3y^2\)
c) \((2x-1)(3x+2)(3-x)=6x^2+4x+6x-2x^2-3x-2-3+x\)= \(4x^2+8x-5\)\(\)
=
a) \((x^2-1)(x^2+2x) =x^4+2x^3-x^2-2x\)
b) \((x+3y)(x^2-2xy+y) = x^3- 2x^2y+xy+3x^2y-6xy^2+3y^2\)
=\(x^3+xy+x^2y+6xy^2+3y^2\)
c) \((2x-1)(3x+2)(3-x)=6x^2+4x+6x-2x^2-3x-2-3+x\)= \(4x^2+8x-5\)\(\)
=
CM các biểu thức sau không phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\times\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
Thực hiện phép tính
a,\(\left(x-y\right)\left(y^2+y+1\right)+\left(\dfrac{1}{3}x^2y-y\right)\left(2x+y^2\right)\)
b,\(2x^2\left(x-2\right)+3x\left(x^2-x-2\right)-5\left(3-x^2\right)\)
c,\(\left(x-1\right)\left(x-3\right)-\left(4-x\right)\left(2x-1\right)-3x^3+2x-5\)
a)làm tính nhân: (x+2)\(\left(x^2+3x+1\right)\)
b)Làm tính chia: \(\left(2x^3+10x^2+9x+4\right):\left(x+4\right)\)
Làm tính chia :
a) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
b) \(\left(x^4-x^3+x^2+3x\right):\left(x^2-2x+3\right)\)
c) \(\left(x^2-y^2+6x+9\right):\left(x+y+3\right)\)
Tìm x:
a) \(3x\left(3x-8\right)-9x^2+8=0\)
b)\(6x-15-x\left(5-2x\right)=0\)
c) \(x^3-16x=0\)
d) \(2x^2+3x-5=0\)
e) \(3x^2-x\left(3x-6\right)=36\)
f) \(\left(x+2\right)^2-\left(x-5\right)\left(x+1\right)=17\)
g) \(\left(x-4\right)^2-x\left(x+6\right)=9\)
h) \(4x\left(x-1000\right)-x+1000=0\)
i) \(x^2-36=0\)
j) \(x^2y-2+x+x^2-2y+xy=0\)
k) \(x\left(x+1\right)-\left(x-1\right).\left(2x-3\right)=0\)
l) \(3x^3-27x=0\)
Rút gọn các biểu thức sau :
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
b) \(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)
Làm tính nhân :
a) \(\left(2x^2-3x\right)\left(5x^2-2x+1\right)\)
b) \(\left(x-2y\right)\left(3xy+5y^2+x\right)\)
Tính
\(\left[\dfrac{3x+y}{x\left(x-3y\right)}+\dfrac{3x-y}{x\left(x+3y\right)}\right].\dfrac{\left(x-3y\right)\left(x+3y\right)}{x^2+y^2}\)
Làm tính chia :
a) \(\left(2x^3+5x^2-2x+3\right):\left(2x^2-x+1\right)\)
b) \(\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)\)
c) \(\left(x^4-x-14\right):\left(x-2\right)\)