a. \(\sqrt{x^2-2x+4}=2x-2\)
<=> x2 - 2x + 4 = (2x - 2)2
<=> x2 - 2x + 4 = 4x2 - 8x + 4
<=> 4x2 - x2 - 8x + 2x + 4 - 4 = 0
<=> 3x2 - 6x = 0
<=> 3x(x - 2) = 0
<=> \(\left[{}\begin{matrix}3x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
b. \(\sqrt{x^2-2x}=\sqrt{2-3x}\)
<=> x2 - 2x = 2 - 3x
<=> x2 + 3x - 2x - 2 = 0
<=> x2 + x - 2 = 0
<=> x2 + 2x - x - 2 = 0
<=> x(x + 2) - (x + 2) = 0
<=> (x - 1)(x + 2) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
c. (Tương tự câu a)
e: Ta có: \(2\sqrt{9y-27}-\dfrac{1}{5}\sqrt{25y-75}-\dfrac{1}{7}\sqrt{49y-147}=0\)
\(\Leftrightarrow\sqrt{y-3}=0\)
hay y=3