Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Khối lượng q (kg) của một mặt hàng mà cửa tiệm bán được trong một ngày phụ thuộc vào giá bán p (nghìn đồng/kg) theo công thức \(p=15-\dfrac{1}{2}q\). Doanh thu từ việc bán mặt hàng trên của cửa tiệm được tính theo công thức R = pq.

a) Viết công thức biểu diễn R theo p.

b) Tìm giá bán mỗi kilôgam sản phẩm để đạt được doanh thu cao nhất và xác định doanh thu cao nhất đó.

datcoder
28 tháng 10 lúc 7:06

a) Ta có: \(p = 15 - \frac{1}{2}q \Leftrightarrow q = 2(15 - p)\)

Thay vào \(R = pq\) ta được: \(R = p.2(15 - p) =  - 2{p^2} + 30p\)

b) Đặt \(y =  - 2{p^2} + 30p\)

Tập xác định: \(D = (0; + \infty )\)

\(y' =  - 4p + 30 = 0 \Leftrightarrow p = 7,5\)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D y = y(7,5) = 112,5\)

Vậy nếu giá bán mỗi kilôgam sản phẩm là 7,5 nghìn đồng/kg thì sẽ đạt được doanh thu cao nhất là 112,5 nghìn đồng