Bài 4: Khảo sát và vẽ đồ thị một số hàm số cơ bản

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Khảo sát và vẽ đồ thị của các hàm số sau:

a) \(y=x-\dfrac{1}{x}\);                    b) \(y=-x+2-\dfrac{1}{x+1}\);                     c) \(y=\dfrac{-x^2-x+2}{x+1}\).

Nguyễn Quốc Đạt
28 tháng 10 2024 lúc 23:02

a) \(y = x - \frac{1}{x}\)

Tập xác định: \(D = \mathbb{R}\backslash \{ 0\} \)

- Chiều biến thiên:

\(y' = 1 + \frac{1}{{{x^2}}} \ge 0\forall x \in D\) nên hàm số đồng biến trên D

- Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } (x - \frac{1}{x}) =  + \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } (x - \frac{1}{x}) =  - \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } (1 - \frac{1}{{{x^2}}}) = 1;b = \mathop {\lim }\limits_{x \to  + \infty } (x - \frac{1}{x} - x) = 0\) nên y = x là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} (x - \frac{1}{x}) =  - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} (x - \frac{1}{x}) =  + \infty \) nên x = 0 là tiệm cận đứng của đồ thị hàm số

- Bảng biến thiên:

Ta có: \(y = 0 \Leftrightarrow x - \frac{1}{x} = 0 \Leftrightarrow x = 1\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (1; 0)

b) \(y =  - x + 2 - \frac{1}{{x + 1}}\)

Tập xác định: \(D = \mathbb{R}\backslash \{  - 1\} \)

- Chiều biến thiên:

\(y' =  - 1 + \frac{1}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 2\\x = 0\end{array} \right.\)

Trên các khoảng (\( - \infty \); -2), (0; \( + \infty \)) thì y' < 0 nên hàm số nghịch biến trên mỗi khoảng đó. Trên khoảng (-2; -1) và (-1; 0) thì y' > 0 nên hàm số đồng biến trên khoảng đó.

- Giới hạn và tiệm cận:

\(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } ( - x + 2 - \frac{1}{{x + 1}}) =  - \infty ;\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } ( - x + 2 - \frac{1}{{x + 1}}) =  + \infty \)

\(a = \mathop {\lim }\limits_{x \to  + \infty } ( - 1 + \frac{2}{x} - \frac{1}{{{x^2} + x}}) =  - 1;b = \mathop {\lim }\limits_{x \to  + \infty } ( - x + 2 - \frac{1}{{x + 1}} + x) = 2\) nên y = -x + 2 là tiệm cận xiên của đồ thị hàm số

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ + }} ( - x + 2 - \frac{1}{{x + 1}}) =  - \infty ;\mathop {\lim }\limits_{x \to  - {1^ - }} y = \mathop {\lim }\limits_{x \to  - {1^ - }} ( - x + 2 - \frac{1}{{x + 1}}) =  + \infty \) nên x = -1 là tiệm cận đứng của đồ thị hàm số

- Bảng biến thiên:

Khi x = 0 thì y = 1 nên (0;1) là giao điểm của y với trục Oy

Ta có: \(y = 0 \Leftrightarrow  - x + 2 - \frac{1}{{x + 1}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{1 - \sqrt 5 }}{2}\\x = \frac{{1 + \sqrt 5 }}{2}\end{array} \right.\)

Vậy đồ thị của hàm số giao với trục Ox tại điểm (\(\frac{{1 - \sqrt 5 }}{2}\); 0) và (\(\frac{{1 + \sqrt 5 }}{2}\);0)