Lời giải:
$x-2\sqrt{x}-15=(x-5\sqrt{x})+(3\sqrt{x}-15)$
$=\sqrt{x}(\sqrt{x}-5)+3(\sqrt{x}-5)=(\sqrt{x}-5)(\sqrt{x}+3)$
\(\text{ x - 2 √ x - 15}\)
\(=x+3\sqrt{x}\)\(-5\sqrt{x}\)\(-15\)
\(=\left(x+3\sqrt{x}\right)\)\(-\left(5\sqrt{x}\right)\)\(+15\)
\(=\sqrt{x}\)\(\left(\sqrt{x}+3\right)-5\left(\sqrt{x}+3\right)\)
\(\left(\sqrt{x}+3\right)-5\left(\sqrt{x}-5\right)\)