\(dkxd:x\ge-1;\sqrt{x-4\sqrt{x+1}+3}=5\Leftrightarrow x-4\sqrt{x+1}+3=25\Leftrightarrow x+1-4\sqrt{x+1}+2=25\Leftrightarrow\left(x+1\right)-4\sqrt{x+1}+4=27\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=-\sqrt{27}+2\left(< 0loai\right)\\\sqrt{x+1}=\sqrt{27}+2\left(tm\right)\end{matrix}\right.\Leftrightarrow x+1=31+4\sqrt{27}\Leftrightarrow x=30+4\sqrt{27}\)
\(\sqrt{x-4\sqrt{x+1}+3}=5\)
\(\Leftrightarrow x-4\sqrt{x+1}+3=25\)
\(\Leftrightarrow x-4\sqrt{x+1}-22=0\)
\(\Leftrightarrow x+1-4\sqrt{x+1}+4-27=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-2\right)^2=27=\left(\pm\sqrt{27}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}-2=\sqrt{27}\\\sqrt{x+1}-2=-\sqrt{27}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{27}+2\left(chon\right)\\\sqrt{x+1}=-\sqrt{27}-2\left(loai\right)\end{matrix}\right.\)
Xét \(\sqrt{x+1}=\sqrt{27}+2\)
\(\Leftrightarrow x+1=31+12\sqrt{3}\)
\(\Leftrightarrow x=30+12\sqrt{3}\)
Vậy...