\(\Delta ABC\) có: \(AD\) là đường phân giác
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BD}{DC}\) (ĐL)
\(\Leftrightarrow\dfrac{6}{9}=\dfrac{BD}{10-BD}\)
\(\Rightarrow6\left(10-BD\right)=9BD\)
\(\Leftrightarrow60-6BD=9BD\)
\(\Leftrightarrow-6BD-9BD=-60\)
\(\Leftrightarrow-15BD=-60\)
\(\Leftrightarrow BD=4\left(cm\right)\)
\(\circledast DC=BC-BD=10-4=6\left(cm\right)\)
Vậy \(BD=4cm\) và \(DC=6cm\)
Do AD là đường phân giác nên theo tính chất đường phân giác ta có :
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\Leftrightarrow\) \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{AB+AC}{BD+CD}=\dfrac{AB+AC}{BD}=\dfrac{6+9}{10}=\dfrac{15}{10}=\dfrac{3}{2}\)
\(\left\{{}\begin{matrix}\dfrac{AB}{BD}=\dfrac{3}{2}\Rightarrow BD=4cm\\\dfrac{AC}{CD}=\dfrac{3}{2}\Rightarrow CD=6cm\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}BD=4cm\\CD=6cm\end{matrix}\right.\)
Wish you study well !!