a.
\(2\left(x^2+y^2+2xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
b.
\(F=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+bd}+\dfrac{c^2}{cd+ac}+\dfrac{d^2}{ad+bd}\)
\(F\ge\dfrac{\left(a+b+c+d\right)^2}{ab+ac+bc+bd+cd+ac+ad+bd}=\dfrac{\left(a+c\right)^2+\left(b+d\right)^2+2\left(a+c\right)\left(b+d\right)}{2ac+bd+\left(a+c\right)\left(b+d\right)}\)
\(F\ge\dfrac{4ac+4bd+2\left(a+c\right)\left(b+d\right)}{2ac+2bd+\left(a+c\right)\left(b+d\right)}=2\)
Dấu "=" xảy ra khi \(a=b=c=d\)