Câu 1:
a) Xét ΔABC có
M\(\in\)AB(gt)
N\(\in\)AC(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{3}\right)\)
Do đó: MN//BC(Định lí Ta lét đảo)
Câu 1:
a) Xét \(\Delta ABC\) có:
\(\left\{{}\begin{matrix}\dfrac{AM}{AB}=\dfrac{2}{6}=\dfrac{1}{3}\\\dfrac{AN}{AC}=\dfrac{3}{9}=\dfrac{1}{3}\end{matrix}\right.\)
⇒ \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{3}\right)\)
⇒ MN // BC (Theo định lí Ta-lét đảo) \(\left(ĐPCM\right)\)
b)
Xét \(\Delta ABC\) có MN//BC (cmt)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{MN}{BC}\) ⇒ \(\dfrac{AM}{MN}=\dfrac{AB}{BC}\) \(\left(1\right)\)
Xét \(\Delta ABC\) có NK//AB (gt)
⇒ \(\dfrac{AB}{NK}=\dfrac{BC}{CK}\) ⇒ \(\dfrac{AB}{BC}=\dfrac{NK}{CK}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{AM}{MN}=\dfrac{NK}{CK}\)
⇒ \(AM.KC=NK.MN\) \(\left(ĐPCM\right)\)